Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
2.
Curr Opin Pulm Med ; 27(3): 205-209, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-2270272

ABSTRACT

PURPOSE OF REVIEW: Severe acute respiratory syndrome coronavirus-2-induced hyperinflammation is a major cause of death or end-organ dysfunction in COVID-19 patients. We review adjunct host-directed therapies (HDTs) for COVID-19 management. RECENT FINDINGS: The use of umbilical cord-derived mesenchymal stem cells as HDT for COVID-19 has been shown to be safe in phase 1 and 2 trials. Trials of anti-interleukin-6 receptor antibodies show promising mortality benefit in hospitalized COVID-19 patients. Repurposed drugs and monoclonal antibodies targeting specific cytokines acting on different aspects of the pro- and anti-inflammatory cascades are under evaluation. SUMMARY: A range of HDTs shows promise for reducing mortality and improving long term disability in patients with severe COVID-19, and require evaluation in randomized, controlled trials.


Subject(s)
COVID-19 , Immunologic Factors/pharmacology , Mesenchymal Stem Cell Transplantation/methods , Molecular Targeted Therapy/methods , COVID-19/immunology , COVID-19/therapy , Humans , Inflammation/immunology , Inflammation/therapy , SARS-CoV-2
4.
Oncoimmunology ; 12(1): 2163785, 2023.
Article in English | MEDLINE | ID: covidwho-2166017

ABSTRACT

The SARS-CoV-2 pandemic still represents a threat for immunosuppressed and hematological malignancy (HM) bearing patients, causing increased morbidity and mortality. Given the low anti-SARSCoV-2 IgG titers post-vaccination, the COVID-19 threat prompted the prophylactic use of engineered anti-SARS-CoV-2 monoclonal antibodies. In addition, potential clinical significance of T cell responses has been overlooked during the first waves of the pandemic, calling for additional in-depth studies. We reported that the polarity and the repertoire of T cell immune responses govern the susceptibility to SARS-CoV-2 infection in health care workers and solid cancer patients. Here, we longitudinally analyzed humoral and cellular immune responses at each BNT162b2 mRNA vaccine injection in 47 HM patients under therapy. Only one-third of HM, mostly multiple myeloma (MM) bearing patients, could mount S1-RBD-specific IgG responses following BNT162b2 mRNA vaccines. This vaccine elicited a S1-RBD-specific Th1 immune response in about 20% patients, mostly in MM and Hodgkin lymphoma, while exacerbating Th2 responses in the 10% cases that presented this recognition pattern at baseline (mostly rituximab-treated patients). Performing a third booster barely improved the percentage of patients developing an S1-RBD-specific Th1 immunity and failed to seroconvert additional HM patients. Finally, 16 patients were infected with SARS-CoV-2, of whom 6 developed a severe infection. Only S1-RBD-specific Th1 responses were associated with protection against SARS-CoV2 infection, while Th2 responses or anti-S1-RBD IgG titers failed to correlate with protection. These findings herald the paramount relevance of vaccine-induced Th1 immune responses in hematological malignancies.


Subject(s)
COVID-19 , Hematologic Neoplasms , Multiple Myeloma , Vaccines , Humans , COVID-19/prevention & control , BNT162 Vaccine , SARS-CoV-2 , RNA, Viral , Hematologic Neoplasms/complications , Antibodies, Viral , Immunoglobulin G
6.
Viruses ; 14(7)2022 07 20.
Article in English | MEDLINE | ID: covidwho-1939028

ABSTRACT

The main aim of this study was to describe the clinical and immunological outcomes, as well as the inflammatory profile, of patients with advanced HIV in an assisted-living facility in which an outbreak of SARS-CoV-2 occurred. SARS-CoV-2 humoral and specific T-cell response were analyzed in patients with HIV infection and COVID-19; as a secondary objective of the analysis, levels of the inflammatory markers (IL-1ß, IL-6, IL-8, and TNFα) were tested in the HIV/COVID-19 group, in HIV-positive patients without COVID-19, and in HIV-negative patients with mild/moderate COVID-19. Antibody kinetics and ability to neutralize SARS-CoV-2 were evaluated by ELISA assay, as well as the inflammatory cytokines; SARS-CoV-2 specific T-cell response was quantified by ELISpot assay. Mann-Whitney or Kruskal-Wallis tests were used for comparisons. Thirty patients were included with the following demographics: age, 57 years old (IQR, 53-62); 76% male; median HIV duration of infection, 18 years (15-29); nadir of CD4, 57/mmc (23-100) current CD4 count, 348/mmc (186-565). Furthermore, 83% had at least one comorbidity. The severity of COVID-19 was mild/moderate, and the overall mortality rate was 10% (3/30). Additionally, 90% of patients showed positive antibody titers and neutralizing activity, with a 100% positive SARS-CoV-2 specific T-cell response over time, suggesting the ability to induce an effective specific immunity. Significantly higher levels of IL-6, IL-8, and TNF-α in COVID-19 without HIV vs. HIV/COVID-19 patients (p < 0.05) were observed. HIV infection did not seem to negatively impact COVID-19-related inflammatory state and immunity. Further data are mandatory to evaluate the persistence of these immunity and its ability to expand after exposure and/or vaccination.


Subject(s)
COVID-19 , HIV Infections , Antibodies, Viral , Antibody Formation , COVID-19/epidemiology , COVID-19/immunology , Disease Outbreaks , Female , HIV Infections/complications , HIV Infections/epidemiology , Humans , Immunity, Cellular , Interleukin-6 , Interleukin-8 , Male , Middle Aged , SARS-CoV-2
7.
Int J Infect Dis ; 2022 Mar 20.
Article in English | MEDLINE | ID: covidwho-1747897

ABSTRACT

OBJECTIVE: To review the data presented in the 2021 WHO global TB report and discuss the current constraints in the global response. INTRODUCTION AND METHODS: The WHO global TB reports, consolidate TB data from countries and provide up to date assessment of the global TB epidemic. We reviewed the data presented in the 2021 report. RESULTS: We noted that the 2021 WHO global TB report presents a rather grim picture on the trajectory of the global epidemic of TB including a stagnation in the annual decline in TB incidence, a decline in TB notifications and an increase in estimated TB deaths. All the targets set at the 2018 United Nations High Level Meeting on TB were off track. INTERPRETATION AND CONCLUSION: The sub-optimal global performance on achieving TB control targets in 2020 is attributed to the on-going COVID-19 pandemic, however, TB programs were already off track well before the onset of the pandemic, suggesting that the pandemic amplified an already fragile global TB response. We emphasize that ending the global TB epidemic will require bold leadership, optimization of existing interventions, widespread coverage, addressing social determinants of TB and importantly mobilization of adequate funding required for TB care and prevention.

8.
Int J Infect Dis ; 2022 Mar 14.
Article in English | MEDLINE | ID: covidwho-1739796

ABSTRACT

OBJECTIVES: Investments into 'Blue Skies' fundamental TB research in low- and middle-income countries (LMICs) have not been forthcoming. We highlight why blue skies research will be essential for achieving global TB control and eradicating TB. METHODS: We review the historical background to early TB discovery research and give examples of where investments into basic science and fundamental 'blue skies research' are delivering novel data and approaches to advance diagnosis, management and holistic care for patients with active and latent TB infection. FINDINGS: The COVID-19 pandemic has shown that making available adequate funding for priority investments into 'Blue skies research' to delineate scientific understanding of a new infectious diseases threat to global health security can lead to rapid development and rollout of new diagnostic platforms, treatments, and vaccines. Several advances in new TB diagnostics, new treatments and vaccine development are underpinned by basic science research. CONCLUSIONS: Blue Skies research is required to pave the way for a personalized medicine approach for management of TB and other Respiratory Tract Infections and preventing long-term functional disability. Transfer of skills and resources by wealthier nations is required to empower researchers in LMICs countries to engage in and lead Blue Skies research.

10.
Int J Infect Dis ; 113 Suppl 1: S78-S81, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1575136

ABSTRACT

After a century of controversies on its usefulness in protection against TB, underlying mechanisms of action, and benefits in various groups and geographical areas, the BCG vaccine is yet again a focus of global attention- this time due to the global COVID-19 pandemic caused by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Recent studies have shown that human CD4+ and CD8+ T-cells primed with a BCG-derived peptide developed high reactivity to its corresponding SARS-CoV-2-derived peptide. Furthermore, BCG vaccine has been shown to substantially increase interferon-gamma (IFN-g) production and its effects on CD4+ T-cells and these non-specific immune responses through adjuvant effect could be harnessed as cross protection against severe forms of COVID-19.The completion of ongoing BGG trials is important as they may shed light on the mechanisms underlying BCG-mediated immunity and could lead to improved efficacy, increased tolerance of treatment, and identification of other ways of combining BCG with other immunotherapies.


Subject(s)
BCG Vaccine , COVID-19 , Cross Protection , Humans , Pandemics , SARS-CoV-2
12.
Infect Genet Evol ; 96: 105101, 2021 12.
Article in English | MEDLINE | ID: covidwho-1506832

ABSTRACT

COVID-19 stalled the world in 2020 and continues to be the greatest health crisis of this generation. While the apparent case fatality rates across fluctuates around ~2% globally, associated mortality/death rate (deaths per million population) varies distinctly across regions from the global average of ~600 per million population. Heterogeneous factors have been linked with COVID-19 associated mortalities and these include age, share of geriatric population, comorbidities, trained immunity and climatic conditions. Apart from direct or indirect role of endemic diseases, dietary factors and host immunity in regulating COVID-19 severity, human behaviour will inevitably control outcome of this pandemic. Comprehensive understanding of these factors will have a bearing on management of future health crises.


Subject(s)
COVID-19/etiology , COVID-19/mortality , Angiotensin-Converting Enzyme 2/genetics , COVID-19/immunology , COVID-19/psychology , Comorbidity , Diabetes Mellitus/epidemiology , Diet , Humans , Immunity, Innate , Polymorphism, Genetic , Vaccines/immunology
13.
Sci Transl Med ; 14(627): eabj1996, 2022 Jan 12.
Article in English | MEDLINE | ID: covidwho-1483986

ABSTRACT

Safe and effective vaccines against coronavirus disease 2019 (COVID-19) are essential for ending the ongoing pandemic. Although impressive progress has been made with several COVID-19 vaccines already approved, it is clear that those developed so far cannot meet the global vaccine demand alone. We describe a COVID-19 vaccine based on a replication-defective gorilla adenovirus expressing the stabilized prefusion severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein named GRAd-COV2. We assessed the safety and immunogenicity of a single-dose regimen of this vaccine in healthy younger and older adults to select the appropriate dose for each age group. For this purpose, a phase 1, dose-escalation, open-labeled trial was conducted including 90 healthy participants (45 aged 18 to 55 years old and 45 aged 65 to 85 years old) who received a single intramuscular administration of GRAd-COV2 at three escalating doses. Local and systemic adverse reactions were mostly mild or moderate and of short duration, and no serious adverse events were reported. Four weeks after vaccination, seroconversion to spike protein and receptor binding domain was achieved in 43 of 44 young volunteers and in 45 of 45 older participants. Consistently, neutralizing antibodies were detected in 42 of 44 younger-age and 45 of 45 older-age volunteers. In addition, GRAd-COV2 induced a robust and T helper 1 cell (TH1)­skewed T cell response against the spike protein in 89 of 90 participants from both age groups. Overall, the safety and immunogenicity data from the phase 1 trial support the further development of this vaccine.


Subject(s)
Adenovirus Vaccines , COVID-19 , Adenoviridae , Aged , Animals , COVID-19 Vaccines , Gorilla gorilla , Humans , SARS-CoV-2
14.
Cell Death Dis ; 12(8): 788, 2021 08 12.
Article in English | MEDLINE | ID: covidwho-1356553

ABSTRACT

In the last months, many studies have clearly described several mechanisms of SARS-CoV-2 infection at cell and tissue level, but the mechanisms of interaction between host and SARS-CoV-2, determining the grade of COVID-19 severity, are still unknown. We provide a network analysis on protein-protein interactions (PPI) between viral and host proteins to better identify host biological responses, induced by both whole proteome of SARS-CoV-2 and specific viral proteins. A host-virus interactome was inferred, applying an explorative algorithm (Random Walk with Restart, RWR) triggered by 28 proteins of SARS-CoV-2. The analysis of PPI allowed to estimate the distribution of SARS-CoV-2 proteins in the host cell. Interactome built around one single viral protein allowed to define a different response, underlining as ORF8 and ORF3a modulated cardiovascular diseases and pro-inflammatory pathways, respectively. Finally, the network-based approach highlighted a possible direct action of ORF3a and NS7b to enhancing Bradykinin Storm. This network-based representation of SARS-CoV-2 infection could be a framework for pathogenic evaluation of specific clinical outcomes. We identified possible host responses induced by specific proteins of SARS-CoV-2, underlining the important role of specific viral accessory proteins in pathogenic phenotypes of severe COVID-19 patients.


Subject(s)
COVID-19/metabolism , COVID-19/virology , SARS-CoV-2/metabolism , Host Microbial Interactions , Immunity/immunology , Protein Interaction Maps/physiology , Proteome , Proteomics/methods , SARS-CoV-2/pathogenicity , Severity of Illness Index , Viral Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism
15.
Cell Death Differ ; 28(12): 3297-3315, 2021 12.
Article in English | MEDLINE | ID: covidwho-1298835

ABSTRACT

Patients with cancer are at higher risk of severe coronavirus infectious disease 2019 (COVID-19), but the mechanisms underlying virus-host interactions during cancer therapies remain elusive. When comparing nasopharyngeal swabs from cancer and noncancer patients for RT-qPCR cycle thresholds measuring acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in 1063 patients (58% with cancer), we found that malignant disease favors the magnitude and duration of viral RNA shedding concomitant with prolonged serum elevations of type 1 IFN that anticorrelated with anti-RBD IgG antibodies. Cancer patients with a prolonged SARS-CoV-2 RNA detection exhibited the typical immunopathology of severe COVID-19 at the early phase of infection including circulation of immature neutrophils, depletion of nonconventional monocytes, and a general lymphopenia that, however, was accompanied by a rise in plasmablasts, activated follicular T-helper cells, and non-naive Granzyme B+FasL+, EomeshighTCF-1high, PD-1+CD8+ Tc1 cells. Virus-induced lymphopenia worsened cancer-associated lymphocyte loss, and low lymphocyte counts correlated with chronic SARS-CoV-2 RNA shedding, COVID-19 severity, and a higher risk of cancer-related death in the first and second surge of the pandemic. Lymphocyte loss correlated with significant changes in metabolites from the polyamine and biliary salt pathways as well as increased blood DNA from Enterobacteriaceae and Micrococcaceae gut family members in long-term viral carriers. We surmise that cancer therapies may exacerbate the paradoxical association between lymphopenia and COVID-19-related immunopathology, and that the prevention of COVID-19-induced lymphocyte loss may reduce cancer-associated death.


Subject(s)
COVID-19/complications , COVID-19/virology , Lymphopenia/complications , Neoplasms/complications , RNA, Viral/analysis , SARS-CoV-2/genetics , Virus Shedding , Adolescent , Adult , Aged , Aged, 80 and over , Cohort Studies , DNA, Bacterial/blood , Enterobacteriaceae/genetics , Female , Humans , Interferon Type I/blood , Lymphopenia/virology , Male , Micrococcaceae/genetics , Middle Aged , Nasopharynx/virology , Neoplasms/diagnosis , Neoplasms/mortality , Pandemics , Prognosis , Time Factors , Young Adult
16.
J Med Virol ; 93(3): 1796-1804, 2021 03.
Article in English | MEDLINE | ID: covidwho-1206820

ABSTRACT

Little evidence on coronavirus disease 2019 (COVID-19) in people living with HIV (PLWH) is currently available. We reported clinical and viroimmunological data of all HIV-positive patients admitted to our center with COVID-19 from March 1 to May 12, 2020. Overall, five patients were included: all were virologically-suppressed on antiretroviral therapy and CD4+ count was greater than 350 cell/mm3 in all but two patients. Although all patients had evidence of pneumonia on admission, only one developed respiratory failure. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was never detected from nasopharyngeal swabs in two patients, whereas in the others, viral clearance occurred within a maximum of 43 days. Immunoglobulin G production was elicited in all patients and neutralizing antibodies in all but one patient. Specific-T-cell response developed in all patients but was stronger in those with the more severe presentations. Similarly, the highest level of proinflammatory cytokines was found in the only patient experiencing respiratory failure. Despite a mild presentation, patients with more pronounced immunosuppression showed high degrees of both cytokines production and immune activation. Our study did not find an increased risk and severity of COVID-19 in PLWH. Adaptative cellular immune response to SARS-CoV-2 appeared to correlate to disease severity. The mild clinical picture showed in advanced HIV patients, despite a significant T-cell activation and inflammatory profile, suggests a potential role of HIV-driven immunological dysregulation in avoiding immune-pathogenetic processes. However, other possible explanations, as a protective role of certain antiretroviral drugs, should be considered. Further larger studies are needed to better clarify the impact of HIV infection on COVID-19.


Subject(s)
Anti-Retroviral Agents/therapeutic use , COVID-19 Drug Treatment , HIV Infections/drug therapy , SARS-CoV-2/drug effects , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , CD4 Lymphocyte Count , Coinfection/virology , Cytokines/blood , Female , HIV Integrase Inhibitors/therapeutic use , Heterocyclic Compounds, 3-Ring/therapeutic use , Humans , Immunity, Humoral/immunology , Male , Middle Aged , Oxazines/therapeutic use , Piperazines/therapeutic use , Pyridones/therapeutic use , RNA, Viral/analysis , Reverse Transcriptase Inhibitors/therapeutic use , Risk , Severity of Illness Index , Tenofovir/therapeutic use , Transgender Persons
17.
Semin Immunopathol ; 42(3): 279-313, 2020 06.
Article in English | MEDLINE | ID: covidwho-1202745

ABSTRACT

Modulation of immune responses by nutrients is an important area of study in cellular biology and clinical sciences in the context of cancer therapies and anti-pathogen-directed immune responses in health and disease. We review metabolic pathways that influence immune cell function and cellular persistence in chronic infections. We also highlight the role of nutrients in altering the tissue microenvironment with lessons from the tumor microenvironment that shapes the quality and quantity of cellular immune responses. Multiple layers of biological networks, including the nature of nutritional supplements, the genetic background, previous exposures, and gut microbiota status have impact on cellular performance and immune competence against molecularly defined targets. We discuss how immune metabolism determines the differentiation pathway of antigen-specific immune cells and how these insights can be explored to devise better strategies to strengthen anti-pathogen-directed immune responses, while curbing unwanted, non-productive inflammation.


Subject(s)
Gastrointestinal Microbiome , Tumor Microenvironment , Humans , Immunity, Cellular , Lymphocytes , Metabolic Networks and Pathways
18.
Signal Transduct Target Ther ; 6(1): 58, 2021 02 10.
Article in English | MEDLINE | ID: covidwho-1078577

ABSTRACT

Treatment of severe Coronavirus Disease 2019 (COVID-19) is challenging. We performed a phase 2 trial to assess the efficacy and safety of human umbilical cord-mesenchymal stem cells (UC-MSCs) to treat severe COVID-19 patients with lung damage, based on our phase 1 data. In this randomized, double-blind, and placebo-controlled trial, we recruited 101 severe COVID-19 patients with lung damage. They were randomly assigned at a 2:1 ratio to receive either UC-MSCs (4 × 107 cells per infusion) or placebo on day 0, 3, and 6. The primary endpoint was an altered proportion of whole lung lesion volumes from baseline to day 28. Other imaging outcomes, 6-minute walk test (6-MWT), maximum vital capacity, diffusing capacity, and adverse events were recorded and analyzed. In all, 100 COVID-19 patients were finally received either UC-MSCs (n = 65) or placebo (n = 35). UC-MSCs administration exerted numerical improvement in whole lung lesion volume from baseline to day 28 compared with the placebo (the median difference was -13.31%, 95% CI -29.14%, 2.13%, P = 0.080). UC-MSCs significantly reduced the proportions of solid component lesion volume compared with the placebo (median difference: -15.45%; 95% CI -30.82%, -0.39%; P = 0.043). The 6-MWT showed an increased distance in patients treated with UC-MSCs (difference: 27.00 m; 95% CI 0.00, 57.00; P = 0.057). The incidence of adverse events was similar in the two groups. These results suggest that UC-MSCs treatment is a safe and potentially effective therapeutic approach for COVID-19 patients with lung damage. A phase 3 trial is required to evaluate effects on reducing mortality and preventing long-term pulmonary disability. (Funded by The National Key R&D Program of China and others. ClinicalTrials.gov number, NCT04288102.


Subject(s)
COVID-19/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , SARS-CoV-2 , Umbilical Cord , Aged , Allografts , COVID-19/mortality , COVID-19/physiopathology , Double-Blind Method , Female , Humans , Male , Middle Aged , Treatment Outcome
19.
Int J Infect Dis ; 105: 49-53, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1071458

ABSTRACT

BACKGROUND/OBJECTIVES: A dysregulated inflammatory profile plays an important role in coronavirus disease-2019 (COVID-19) pathogenesis. Moreover, the depletion of lymphocytes is typically associated with an unfavourable disease course. We studied the role and impact of p53 and deacetylase Sirtuin 1 (SIRT1) on lymph-monocyte homeostasis and their possible effect on T and B cell signalling. METHODS: Gene expression analysis and flow cytometry were performed on peripheral blood mononuclear cells (PBMC) of 35 COVID-19 patients and 10 healthy donors (HD). Inflammatory cytokines, the frequency of Annexin+ cells among CD3+ T cells and CD19+ B cell subsets were quantified. RESULTS: PBMC from COVID-19 patients had a higher p53 expression, and higher concentrations of plasma proinflammatory cytokines (IL1ß, TNF-α, IL8, and IL6) than HD. Deacetylase Sirtuin 1 (SIRT1) expression was significantly decreased in COVID-19 patients and was negatively correlated with p53 (p = 0.003 and r = -0.48). A lower expression of IL-7R and B Cell linker (BLNK), key genes for lymphocyte homeostasis and function, was observed in COVID-19 than in HD. The reduction of IgK and IgL chains was seen in lymphopenic COVID-19 patients. A significant increase in both apoptotic B and T cells were observed. Inflammatory cytokines correlated positively with p53 (IL-1ß: r = 0.5 and p = 0.05; IL-8: r = 0.5 and p = 0.05) and negatively with SIRT1 (IL1-ß: r = -0.5 and p = 0.04; TNF-α: r = -0.4 and p = 0.04). CONCLUSIONS: Collectively, our data indicate that the inflammatory environment, the dysregulated p53/SIRT1 axis and low expression of IL7R and BLNK may impact cell survival, B cell signalling and antibody production in COVID-19 patients. Further studies are required to define the functional impact of low BLNK/IL7R expression during severe acute respiratory syndrome coronavirus-2 infection.


Subject(s)
COVID-19/immunology , Homeostasis , Lymphocytes/immunology , SARS-CoV-2 , Sirtuin 1/physiology , Tumor Suppressor Protein p53/physiology , Aged , Cytokines/blood , Female , Humans , Male , Middle Aged
20.
Front Immunol ; 11: 610300, 2020.
Article in English | MEDLINE | ID: covidwho-1005638

ABSTRACT

SARS-CoV-2 is a novel coronavirus, not encountered before by humans. The wide spectrum of clinical expression of SARS-CoV-2 illness suggests that individual immune responses to SARS-CoV-2 play a crucial role in determining the clinical course after first infection. Immunological studies have focused on patients with moderate to severe disease, demonstrating excessive inflammation in tissues and organ damage. In order to understand the basis of the protective immune response in COVID-19, we performed a longitudinal follow-up, flow-cytometric and serological analysis of innate and adaptive immunity in 64 adults with a spectrum of clinical presentations: 28 healthy SARS-CoV-2-negative contacts of COVID-19 cases; 20 asymptomatic SARS-CoV-2-infected cases; eight patients with Mild COVID-19 disease and eight cases of Severe COVID-19 disease. Our data show that high frequency of NK cells and early and transient increase of specific IgA, IgM and, to a lower extent, IgG are associated with asymptomatic SARS-CoV-2 infection. By contrast, monocyte expansion and high and persistent levels of IgA and IgG, produced relatively late in the course of the infection, characterize severe disease. Modest increase of monocytes and different kinetics of antibodies are detected in mild COVID-19. The importance of innate NK cells and the short-lived antibody response of asymptomatic individuals and patients with mild disease suggest that only severe COVID-19 may result in protective memory established by the adaptive immune response.


Subject(s)
Adaptive Immunity , Antibodies, Viral/immunology , COVID-19/immunology , Immunity, Innate , Immunoglobulin A/immunology , Immunoglobulin M/immunology , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , Adult , COVID-19/pathology , Female , Humans , Killer Cells, Natural/pathology , Male , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL